استخراج ویژگی تصاویر ابرطیفی با استفاده از نمونه های آموزشی محدود
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده مهندسی برق و کامپیوتر
- author مریم ایمانی
- adviser محمدحسن قاسمیان یزدی
- publication year 1394
abstract
تمرکز اصلی ما در این رساله بر روی روش های استخراج ویژگی نظارت شده می باشد که هدف نهایی آن بهبود دقت طبقه بندی با استفاده از نمونه های آموزشی محدود می باشد. در این رساله سعی شده است که با زوایای مختلف به تولید فضای ویژگی با بعد کمترکه در آن تفکیک پذیری میان کلاس ها و در نتیجه دقت طبقه بندی افزایش می یابد نگاه شود. حاصل این نگاه از دیدگاه های مختلف، پیشنهاد و معرفی 14 روش برای استخراج ویژگی از تصاویر ابرطیفی با استفاده از نمونه های آموزشی محدود برای کاربردهای طبقه بندی است. روش های پیشنهادی تا جای ممکن نسبت به سایر روش های استخراج ویژگی، ساده و دارای کارایی مطلوب در تعداد نمونه های آموزشی محدود می باشند. هزینه اصلی اکثر روش های پیشنهادی، کاهش نسبی کارایی با افزایش تعداد نمونه های آموزشی می باشد.
similar resources
بهبود روش استخراج ویژگی غیرپارامتریک وزن دار با استفاده از ترکیب خطی نمونه های آموزشی در تصاویر ابرطیفی
در این تحقیق، روشی برای بهبود استخراخ ویژگی غیرپارامتریک زون دار ارائه شده است، که در مسائل تشخیص الگو در فضاهای با ابعاد بالا استفاده می گردد. روش استخراج غیرپارامتریک زون دار بر اساس بسط غیرپارامتریک ماتریس های پراکندگی قرار گرفته است، که پارمترهای مانگین آن ها به طور جداگانه برای هر نمونه و با استفاده از مجموع وزن دار نمونه های سایر کلاس ها محاسبه می شود. وزن هر یک از این نمونه ها بر اساس فا...
full textجاسازی خط ویژگی وزندار برای استخراج ویژگی تصاویر ابرطیفی
One of the most preprocessing steps before the classification of hyperspectral images is supervised feature extraction. Because obtaining the training samples is hard and time consuming, the number of available training samples is limited. We propose a supervised feature extraction method in this paper that is efficient in small sample size situation. The proposed method, which is called weight...
full textتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
full textجاسازی خط ویژگی وزن دار برای استخراج ویژگی تصاویر ابرطیفی
یکی از مراحل مهم قبل از طبقه بندی تصاویر ابرطیفی، کاهش ویژگی با استفاده از روش های استخراج ویژگی است. در این مقاله یک روش استخراج نظارت شده پیشنهاد شده که دارای کارایی خوبی با استفاده از تعداد نمونه های آموزشی محدود است. روش استخراج ویژگی پیشنهادی که جاسازی خط ویژگی وزن دار (wfle) نامیده شده، از مفاهیم خط ویژگی برای تولید نمونه های آموزشی مجازی استفاده می کند. نمونه های آموزشی مجازی تولید شده ...
full textاستخراج ویژگی در تصاویر ابرطیفی به کمک برازش منحنی با توابع گویا
In this paper, with due respect to the original data and based on the extraction of new features by smaller dimensions, a new feature reduction technique is proposed for Hyper-Spectral data classification. For each pixel of a Hyper-Spectral image, a specific rational function approximation is developed to fit its own spectral response curve (SRC) and the coefficients of the numerator and denomi...
full textاستخراج ویژگی در تصاویر ابرطیفی به کمک برازش منحنی با توابع گویا
در این مقاله روشی برای کاهش ویژگی در تصاویر ابرطیفی به منظور طبقهبندی این دادهها معرفی شده است که بر مبنای استخراج ویژگیهای جدید با ابعادی بسیار کمتر از ابعاد ویژگیهای نخستین عمل میکند. برای هر پیکسل از یک تصویر ابرطیفی یک تابع تقریب کسری گویای مجزا از طریق برازش بر منحنی پاسخ طیفی آن پیکسل تولید میشود. ضرائب چند جملهایهای صورت و مخرج این تابع به عنوان ویژگیهای جدید انتخاب میشوند. روش پ...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده مهندسی برق و کامپیوتر
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023